Amenability for dual Banach algebras

نویسنده

  • Volker Runde
چکیده

We define a Banach algebra A to be dual if A = (A∗) ∗ for a closed submodule A∗ of A∗. The class of dual Banach algebras includes all W ∗-algebras, but also all algebras M(G) for locally compact groups G, all algebras L(E) for reflexive Banach spaces E, as well as all biduals of Arens regular Banach algebras. The general impression is that amenable, dual Banach algebras are rather the exception than the rule. We confirm this impression. We first show that under certain conditions an amenable dual Banach algebra is already super-amenable and thus finite-dimensional. We then develop two notions of amenability — Connes-amenability and strong Connes-amenability — which take the w∗-topology on dual Banach algebras into account. We relate the amenability of an Arens regular Banach algebra A to the (strong) Connes-amenability of A∗∗; as an application, we show that there are reflexive Banach spaces with the approximation property such that L(E) is not Connes-amenable. We characterize the amenability of inner amenable locally compact groups in terms of their algebras of pseudo-measures. Finally, we give a proof of the known fact that the amenable von Neumann algebras are the subhomogeneous ones which avoids the equivalence of amenability and nuclearity for C∗-algebras. 2000 Mathematics Subject Classification: 43A10, 46B28, 46H25, 46H99 (primary), 46L10, 46M20.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Module Amenability of module dual Banach algebras

In this paper we defined the concept of module amenability of Banach algebras and module connes amenability of module dual Banach algebras.Also we assert the concept of module Arens regularity that is different with [1] and investigate the relation between module amenability of Banach algebras and connes module amenability of module second dual Banach algebras.In the following we studythe...

متن کامل

‎Bounded approximate connes-amenability of dual Banach algebras

 We study the notion of bounded approximate Connes-amenability for‎ ‎dual Banach algebras and characterize this type of algebras in terms‎ ‎of approximate diagonals‎. ‎We show that bounded approximate‎ ‎Connes-amenability of dual Banach algebras forces them to be unital‎. ‎For a separable dual Banach algebra‎, ‎we prove that bounded‎ ‎approximate Connes-amenability implies sequential approximat...

متن کامل

On φ-Connes amenability of dual Banach algebras

Let φ be a w-continuous homomorphism from a dual Banach algebra to C. The notion of φ-Connes amenability is studied and some characterizations is given. A type of diagonal for dual Banach algebras is dened. It is proved that the existence of such a diagonal is equivalent to φ-Connes amenability. It is also shown that φ-Connes amenability is equivalent to so-called φ-splitting of a certain short...

متن کامل

$varphi$-Connes amenability of dual Banach algebras

‎Generalizing the notion of character amenability for Banach‎ ‎algebras‎, ‎we study the concept of $varphi$-Connes amenability of‎ ‎a dual Banach algebra $mathcal{A}$ with predual $mathcal{A}_*$‎, ‎where $varphi$ is a homomorphism from $mathcal{A}$ onto $Bbb C$‎ ‎that lies in $mathcal{A}_*$‎. ‎Several characterizations of‎ ‎$varphi$-Connes amenability are given‎. ‎We also prove that the‎ ‎follo...

متن کامل

Semi-amenability and Connes Semi-amenability of Banach Algebras

Let A be a Banach algebra and X a Banach A-bimodule, the derivation D : A → X is semi-inner if there are ξ, μ ∈ X such that D(a) = a.ξ − μ.a, (a ∈ A). A is called semi-amenable if every derivation D : A → X∗ is semi-inner. The dual Banach algebra A is Connes semi-amenable (resp. approximately semi-amenable) if, every D ∈ Z1w _ (A,X), for each normal, dual Banach A-bimodule X, is semi -inner (re...

متن کامل

Weak and $(-1)$-weak amenability of second dual of Banach algebras

For a Banach algebra $A$, $A''$ is $(-1)$-Weakly amenable if $A'$ is a Banach $A''$-bimodule and $H^1(A'',A')={0}$. In this paper, among other things,  we study the relationships between the $(-1)$-Weakly amenability of $A''$ and the weak amenability of $A''$ or $A$. Moreover, we show that the second dual of every $C^ast$-algebra is $(-1)$-Weakly amenable.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002